电影网站评分机制

年前的时候喉舌媒体批评豆瓣,猫眼等评分太低影响了票房,而导致 16 年的年度票房目标没有达到,广电很生气,后果很严重。可是豆瓣存在了那么多年,那么多的电影,在院线上映的,还是不上映的,从来也没有听说过 IMDB 或者 烂番茄的评分会影响到总体的票房。虽然得分的多少或多或少的会对票房有所影响,可这难道是豆瓣,或者 IMDB 或 烂番茄这样的影评网站应该承担的责任吗? 制片公司,发行商,甚至细化到导演,演员,剧本,在国内甚至可以拉上审查来负责,动不动删掉个 14 分钟,谁还愿意花了冤枉钱去大荧幕看一个不完整的片子呢?真正的影迷 大概会愿意花个机票钱去看一个完整版吧。

当然也不想过多的吐槽,或许被“认证”也才能证明豆瓣的评分也算良心吧。这里就看看国内玩几家影评站对网站打分的计分规则。其实早在很早就将计算的公式记录在了记事本里面,一直没有整理。而现在想要来整理一下,也是感觉豆瓣评分在一定程度上没有想象的真实,看过一部被恶意差评的国产片,看后感觉并不是 5 分多的水平,后来看评论才知道其中的某一位演员的黑粉恶意差评才导致这样的结果,而看一些长评论确实客观很多。或许是差评的人,没那么多的时间来写长评吧。所以就像那篇评论中说的那样,“中国电影市场的正常发展,不仅需要好的导演,好的编剧,好的演员,还需要好的观众”。

BGM,找资料时偶得,为某一期奥斯卡缅怀逝去的人时的背景音乐

豆瓣

先来说一说我使用最多的豆瓣,豆瓣也是评分规则中最简单的,豆瓣不人工干预评分,而一部电影的最终得分就是由每个用户的打分的加权平均,举个例子,一个用户打 5 星,一个用户打 3 星,一个用户打 1 星,那么这部片子就是(5+3+1)/3 也就是 3 星,6 分。

豆瓣最后得分的具体公式 1

\[\frac{x_1*1+x_2*2+x_3*3+x_4*4+x_5*5}{x_1+x_2+x_3+x_4+x_5}*2\]

其中, $x_1$ 表示打 1 颗星的人数,$x_2$ 表示打 2 颗星的人数,以此类推。由该公式能够看出,豆瓣的评分是很简单的计算,而至少一颗星(2 分)的最低评分,也无形中提高了影片的评分,因为豆瓣根本不存在 0 分的电影,哦,不,还是有的。其实,豆瓣一直是一个满分 8 分的机制,那些超过 8 分的电影,是一定不会差的。所以曾经有段时间,找不到片子看的时候就直接找 8 分以上的片子看。

screenshot-area-2017-04-08-154156

豆瓣的评分机制简单粗暴,在降低用户打分思考的时候,也会造成用户对一部影片的看法截然不同,尤其是在恶意刷分时,会导致最后的评分波动较大。曾经有人开过玩笑说过豆瓣的评分图案,r 型(5 星占大多数)的为口碑爆棚的好片,P 型为普通好片,b 型为普通烂片,而 C 型是水军刷出来的烂片,还有 L 型是多少水军都刷不出来的超级烂片。现在想来还是依然非常好玩。

时光网

时光网的存在感近两年被慢慢的抹去,但还依然半死不活的存在,时光网和豆瓣的评分机制一样,都是加权平均,只是时光网采用的是 10 分制,也就是用户有 10 个选择,用户需要话时间在评分的分数上,更多的选择,使得绝大部分用户选择中间段进行评分,因而导致最终的评分呈现中庸状态,同样无法真正体现出一部电影的真正得分。

而这样的十分制同样会导致在遭受大规模恶意打分(无论是好评还是差评)之后直接在最终结果中明显体现。

IMDB

IMDB 是国外最大的电影资料站,大家经常提到的 IMDB TOP 250,也就是在该站上评分最高的 250 名。他采用贝叶斯算法,具体的公式 2

\[WR=\frac{v}{v+m}*R+\frac{m}{v+m}*C\]

其中:

  • WR,加权得分 weighted rating
  • R,本影片的平均得分 rating
  • v,评分人数 votes
  • m,基准票数,进入 IMDB Top 250 的最小票数
  • C,站点所有电影的平均分

这个公式的目的是为了让得分更加偏向于平均分,如果投票越多,评分就越接近真实的平均分,否则就越接近所有电影的平均分。而这个公式的唯一人为设定的参数就是基准票数。而这个参数的设定也正是为了解决如何让冷门和热门影片在得分上具有可比性。冷门片不会因为爱好者而导致评分异常高,这个问题也是豆瓣经常遇到的问题,一些冷门韩综,日剧,韩剧在评分上都有一定的偏高。

而关于 IMDB 这个公式是怎么防止恶意刷分,有兴趣可以了解一下当年《蝙蝠侠》和《教父》的往事:

烂番茄

烂番茄主要是专业影评人士评价汇总,和 IMDB 和 豆瓣这样单纯由网名进行投票的评分制度有些不同。而烂番茄通过新鲜度来对电影进行评价,而这里的新鲜度并不是实际意义上的评分,而是由影评人对该影片正面打分的比例来决定的,若正面的评价超过 60% 以上,该部作品将会被认为是“新鲜”(fresh)。如果正面评价超过 75 % ,那么该作品会得到“Certified Fresh” 的评价,而如果一部作品的正面评价低于 60%,那么该作品会被标示为“腐烂”(rotten)。影评人只有两个选项,正面和反面。

烂番茄和其他影评网站的最大区别是,他突出的是人群对一部电影持有的主流观点,而不是一个让每个人都感同身受的数值。

Metacritic

Metacritic 是一个综合性评定网站,影评只是该网站其中的一个小模块,该网站上影评人多以纸媒为主。 Metacritic 的评分主要从主流媒体和专业影评机构聚合而来,这些影评人和其供职的机构大多在影评方面具有公信力,比如《卫报》、《纽约时报》、《时代周刊》等等。但是并不是每一个机构和影评人都给出一个确切的分数。 Metacritic 具体做法是,如果来源有具体评分则使用来源评分,来源有星级打分则换算成百分制,如果来源影评只提供文字,然后他们自己去找人阅读影评,根据读完的感受给分。3

比较

各家网站都有各家的好坏,豆瓣的评分机制是最简单高效的,这也是绝大多数的系统惯常的做法。但正是这样的机制使得刷分异常容易,大批量的差评或者好评能在短时间内影响影片总体的分数。另外一个比较严重的问题就是,无法在冷门片和热门片之间比较,这也是豆瓣官方博客在文章中提及的,热门影片能在短时间内获得几十万的评分,但是一些冷门片,或者一些上映时间比较久远的电影可能难以达到这么多的评分,这样就会导致热门片和冷门片在评分上无法比较。口碑比较好的热门片可能因为观众口味不一而导致评分稍中庸,而冷门片可能因为资深影迷而导致评分过高。因此在豆瓣看评分时,一般还需要看一下评分人数。而最近我也会看一下长评论,毕竟愿意花时间来评价一部影片,远比花 1 秒打个评分要来的认真。

而 IMDB 的评分方式一定程度上解决了冷门影片和热门影片评分上的差异,但是选择基准票数却也需要经过不断的调整,IMDB 历史上也经历过变化,根据该数据,阈值从 3000 票提升到了 25000 票,这次变换也相应的造成了最后得分的变化,尤其是影响了得到 25000 票以下,并且得分较高的影片。可以说只有当影片的评分人数足够多时,基准票数的影响才会减至最小,而对于票数比较少的影片,就相当于一次洗牌。

而对于烂番茄和国内的猫眼专家评分,其实一定意义上说代表着专业领域的人士意见,这些评论都值得一读,但是更多的需要自己的看法,只有最后形成自己的世界观那部分东西才真正属于自己。所以豆瓣和 IMDB 对于我来说,一方面提供给我足够的信息,包括导演,演员,编剧等等,另一方面也是让我远离烂片,毕竟看一部烂片浪费的是自己的时间。

最后,引用数位时代中的一句话,“在美国,佳片会收到它应得的票房和好评作为奖赏,烂片就算进了电影院也不可能躲得开差评 —- 无论在报纸、电台还是在网络上。在美国,对电影的批评,也是言论自由保护的一部分”。

若差评不自由,则高分无意义。

乱想

在我的 Trello 中 2018 年 12 月份的时候,写下了一个问句,“豆瓣评分的权威性”,我想可能是当时脑袋里突然想起来的一个疑问,经过上面这么多的讨论,应该都知道豆瓣评分的计算方式了,虽然这种方式有其优势 —- 简单,但也有其劣势 —- 容易被恶意操作。然而这么多年过去了豆瓣还是依然是那个豆瓣,也越来越多的媒体引用豆瓣的评分来做宣传,那么豆瓣评分的权威性来自哪里?我想了很久,难道正是因为一人一票这种最简单的模式?豆瓣的评分严格来说只有打分的人达到一定的基数后其评分才真正有参考价值,也只有一部影片被放到公共领域被讨论,最后众人给出的评分才是能代表绝大多数的分数。这也就是豆瓣评分权威性的由来,当你参与一个影片的[[公共讨论]]成为其一部分的时候,最后的结果才是能被大多数人认可的。并且你参与的过程有且只有一次,你的打分权重不会比别人高,也不会比别人低,人人平等。那么最后的那个分数就是权威的。(当然这里讨论的豆瓣评分已经说的很清楚了,不包括哪些小众的内容)


2017-04-08 Movie , Douban , IMDB

每天学习一个命令:lsof 列出打开的文件

lsof 用于列出当前系统打开的文件 (list open files),在 Linux 中,任何事物都以文件的形式存在,通过文件不仅仅可以访问常规数据,还可以访问网络连接和硬件。所以比如传输控制协议 (TCP) 和用户数据报协议 (UDP) 套接字等,系统在后台都为该应用程序分配了一个文件描述符,无论这个文件的本质如何,该文件描述符为应用程序与基础操作系统之间的交互提供了通用接口。因为 lsof 命令需要访问核心内存和各种文件,所以需要 root 用户执行。

简单使用

比如可以使用 lsof 来查看当前系统中 80 端口是否被占用

sudo lsof -i tcp:80
COMMAND     PID USER   FD   TYPE   DEVICE SIZE/OFF NODE NAME
docker-pr 14863 root    4u  IPv6 38693061      0t0  TCP *:http (LISTEN)

然后获取到 PID 之后可以用 lsof 来查看进程

sudo lsof -p 14863
COMMAND     PID USER   FD      TYPE   DEVICE SIZE/OFF       NODE NAME
docker-pr 14863 root  cwd       DIR      8,0     4096          2 /
docker-pr 14863 root  rtd       DIR      8,0     4096          2 /
docker-pr 14863 root  txt       REG      8,0  3329080      17531 /usr/bin/docker-proxy
docker-pr 14863 root  mem       REG      8,0  1868984      20743 /lib/x86_64-linux-gnu/libc-2.23.so
docker-pr 14863 root  mem       REG      8,0   138696      11625 /lib/x86_64-linux-gnu/libpthread-2.23.so
docker-pr 14863 root  mem       REG      8,0   162632      10738 /lib/x86_64-linux-gnu/ld-2.23.so
docker-pr 14863 root    0r      CHR      1,3      0t0       8085 /dev/null
docker-pr 14863 root    1w      CHR      1,3      0t0       8085 /dev/null
docker-pr 14863 root    2w      CHR      1,3      0t0       8085 /dev/null
docker-pr 14863 root    4u     IPv6 38693061      0t0        TCP *:http (LISTEN)
docker-pr 14863 root    5u  a_inode     0,12        0       8082 [eventpoll]
docker-pr 14863 root   12r      REG      0,3        0 4026531993 net

由以上的信息就能看出来我的机器中的 80 端口是 docker 占用的,docker 的位置在系统中的 /usr/bin/docker-proxy

lsof 输出各列信息的意义如下:

  • COMMAND:进程的名称
  • PID:进程标识符
  • PPID:父进程标识符(需要指定 -R 参数)
  • USER:进程所有者
  • PGID:进程所属组
  • FD:文件描述符,应用程序通过文件描述符识别该文件。如 cwd、txt 等

FD 的取值

  • cwd:表示 current work dirctory,即:应用程序的当前工作目录,这是该应用程序启动的目录,除非它本身对这个目录进行更改
  • txt :该类型的文件是程序代码,如应用程序二进制文件本身或共享库,如上列表中显示的 /sbin/init 程序
  • lnn:library references (AIX);
  • er:FD information error (see NAME column);
  • jld:jail directory (FreeBSD);
  • ltx:shared library text (code and data);
  • mxx :hex memory-mapped type number xx.
  • m86:DOS Merge mapped file;
  • mem:memory-mapped file;
  • mmap:memory-mapped device;
  • pd:parent directory;
  • rtd:root directory;
  • tr:kernel trace file (OpenBSD);
  • v86 VP/ix mapped file;
  • 0:表示标准输出
  • 1:表示标准输入
  • 2:表示标准错误

一般在标准输出、标准错误、标准输入后还跟着文件状态模式:r、w、u 等

  • u:表示该文件被打开并处于读取 / 写入模式
  • r:表示该文件被打开并处于只读模式
  • w:表示该文件被打开并处于
  • 空格:表示该文件的状态模式为 unknow,且没有锁定
  • -:表示该文件的状态模式为 unknow,且被锁定

介绍

在有了基本的概念之后来看 lsof 的参数

lsof  [ -?abChKlnNOPRtUvVX ] [ -A A ] [ -c c ] [ +c c ] [ +|-d d ] [ +|-D D ] [ +|-e s ] [ +|-E ] [ +|-f [cfgGn] ] [ -F [f] ] [ -g [s] ] [ -i [i] ] [ -k k ] [ +|-L [l] ] [ +|-m m
   ] [ +|-M ] [ -o [o] ] [ -p s ] [ +|-r [t[m<fmt>]] ] [ -s [p:s] ] [ -S [t] ] [ -T [t] ] [ -u s ] [ +|-w ] [ -x [fl] ] [ -z [z] ] [ -Z [Z] ] [ -- ] [names]

能看到非常多的选项,因此也能看到 lsof 的强大。

-i 选项查看网络连接

默认 : 没有选项,lsof 列出活跃进程的所有打开文件

-i : 列出网络连接

使用 lsof -i 来显示所有的链接,可以用来代替 netstat:

sudo lsof -i
COMMAND     PID     USER   FD   TYPE   DEVICE SIZE/OFF NODE NAME
sshd       2972     root    3u  IPv4 18883553      0t0  TCP *:22 (LISTEN)
sshd       2972     root    4u  IPv6 18883562      0t0  TCP *:22 (LISTEN)
docker-pr 14852     root    4u  IPv6 38693034      0t0  TCP *:https (LISTEN)
docker-pr 14863     root    4u  IPv6 38693061      0t0  TCP *:http (LISTEN)

这里输出结果有缩略,但也能看出来 22 的 SSH 端口,然后 http 默认的 80 端口,和 https 使用的 443 端口。如果要查看 IPv6 的流量可以使用 lsof -i 6

同样如果要查看 TCP 或者 UDP 连接信息,可以使用 lsof -iTCPlsof -iUDP

假如已经知道了端口号,想要查看该端口哪一个进程在使用可以使用:

lsof -i:80

再比如查看和本地 22 端口的连接 lsof -i:22

显示来自特定主机的连接,lsof -i@1.2.3.4 ,指定主机和端口 lsof -i@1.2.3.4:22

根据状态过滤

lsof 还可以使用过滤器来过滤连接状态,比如只查看正在监听 TCP 端口的进程:

lsof -iTCP -sTCP:LISTEN

-p 选项查看指定进程

如果已经知道进程的 PID,可以使用 -p 查看指定进程 ID 已打开的内容

lsof -p 10075

列出用户打开的文件

lsof -u einverne

查看 Unix 域套接字

使用 -U 选项来列出系统中正在使用的 Unix 域套接字:

lsof -U

查看 java 项目依赖的 jar

比如说如果系统中依赖的一个 jar 被发现有漏洞,比如说可以查看 fastjson 在系统中有没有使用。

lsof -X | grep fastjson

2017-04-02 lsof , linux , file , command

WEB-INF 目录结构

WEB-INF 是 Java EE Web 程序一个特殊的目录,此目录中的资源不会被列入应用程序根目录可直接访问项。客户端不可直接访问 WEB-INF 中的资源。

根据 Servlet 2.4 specification 中的描述,这个不公开的目录虽然不能被外部访问,但是可以被 servlet 代码 getResource 或者 getResourceAsStream 等方法访问,并且可以暴露给 RequestDispatcher

目录 WEB-INF/web.xml 中保存 web 程序配置文件,XML 格式,描述 servlet 和其他应用组件配置和命名规则。

在 Spring MVC 和其他任何 web 程序中一个好的推荐方式是将所有的 views 或者 JSP 文件存放在 WEB-INF 文件夹中。这些放在 WEB-INF 中的 views 就被称为 internal resource view,这些 views 只能被 servlet 或者 Spring Controller 访问。

reference


2017-04-01 java-web , web , web-inf , spring , spring-mvc

如何找到一首歌的名字

“听歌识曲” 虽然听起来是一个简单的功能,却还依然发展了很多年。在无数的网站评论中看到求求某某片段中的背景音乐,其实绝大部分情况下都可以通过听歌识曲来找到,剩下的也绝大部分可以通过电视,电影的OST找到。所以这篇文章就是介绍下目前市面上我使用过比较好用的一些听歌识曲的应用,这些应用解决了我95%以上,找到喜欢的背景音乐的需求。

授人以鱼不如授人以渔

在电视、综艺、或者大街上听到一首喜欢的背景音乐却不知道歌名的时候,我下意识的会拿出手机来打开网易云音乐,当然这个能够解决一大半的问题,因为经过多年的使用,其实网易的识别还是有些准确的,至少对于绝大部分流行的中日韩欧美歌曲基本都能够识别出来,更甚至之前看请回答系列,识别出来了上世纪六七十年代发行的歌曲。但是听歌识曲有一些小小的弊端,一般情况下需要环境噪声比较小,并且经验给我的感觉是需要一段较长有歌词的完整的片段才能够快速的找到精确的歌。所以如果周围噪音比较大,或者电影中人物有对白时,尽量记住连续一段完整的歌词,然后通过搜索引擎搜索歌词来获取歌名,一般情况下我会加上 lyrics + 记住的歌词 来搜索,基本也能够找到想要的歌。

听歌识曲应用

网易云音乐

网易云音乐

SoundHound

soundhound

Shazam

shazam

Siri

siri

还有其他的酷狗,微信摇一摇啊,就不介绍了。

横向对比

应用名 支持平台 语种 特别功能
网易云音乐 Android/iOS 中韩英 识别出即可播放(当然要排除版权问题)
SoundHound Android/iOS 英中 可以通过哼唱来识别
Shazam Android/iOS 在低功耗情况下一直识别音乐
Siri iOS 随系统自带

2021 年更新

到目前为止,我基本上只会使用 Shazam 和 网易云音乐了,Shazam 被苹果收购之后越来越好用,反而是 SoundHound 可能一直没有找到合适的盈利模式而越来越难用。


2017-03-24 music , collection , bgm , song

vim config vimrc


2017-03-23

Java 查漏补缺之 BigDecimal

在一些对精度要求特别高的系统中,比如会计,金融,Java 中的 double,float 已经不能满足精度需求,谁也不愿意再付款或者计价的时候出现付费 4.4 而账单只有 4.0 元的错误。所以在 Java 中为了更高精度的计算我们需要用到 java.math.BigDecimal.

BigDecimal 需要有两个能力:

  • 指定 scale,也就是小数点后几位
  • 指定舍入模式,当超过精度时如何处理

通常在使用 BigDecimal 时建议使用 传入 String 的构造函数。

BigDecimal bd = new BigDecimal(1.5);
bd = new BigDecimal("1.5");

如果使用 double 的构造函数可能会造成一些问题,比如第一个 bd 可能结果是 1.49999999999999999999

Scale and Rounding

设置小数点(decimal)后面的数字位数,需要使用 .setScale(scale) 方法,与此同时,在设置 scale (数值范围)的时候一并设置 Rounding Mode(舍入模式)被认为是一个比较好的实践方式(Good practice),需要使用 .setScale(scale, roundingMode) 。rounding mode 定义了在损失精度时使用的舍入方式,比如四舍五入,或者 Ceiling 或者 Floor 等等。

为什么需要舍入模式,来看一个例子

bd = new BigDecimal(1.5); // is actually 1.4999....
bd.setScale(1); // throws ArithmeticException

抛出算术异常,因为 BigDecimal 不知道如何处理 1.49999.

有八种定义好的 Rounding Mode,假设保留小数点后两位

ROUND_CEILING: Ceiling function 向天花板舍入

                 0.333  ->   0.34
                -0.333  ->  -0.33

ROUND_DOWN: Round towards zero 向 0 舍入

                 0.333  ->   0.33
                -0.333  ->  -0.33

ROUND_FLOOR: Floor function 往小舍入

                 0.333  ->   0.33
                -0.333  ->  -0.34

ROUND_HALF_UP: Round up if decimal >= .5

                 0.5  ->  1.0
                 0.4  ->  0.0

ROUND_HALF_DOWN: Round up if decimal > .5   最常见的四舍五入

                 0.5  ->  0.0
                 0.6  ->  1.0

ROUND_HALF_EVEN:  当需要舍入的数字是 5 时需要特殊处理,需要看 5 左边的数字奇偶性

 a = new BigDecimal("2.5"); // digit left of 5 is even, so round down
 b = new BigDecimal("1.5"); // digit left of 5 is odd, so round up
 a.setScale(0, BigDecimal.ROUND_HALF_EVEN).toString() // => 2
 b.setScale(0, BigDecimal.ROUND_HALF_EVEN).toString() // => 2

ROUND_UNNECESSARY: 当需要使用一种舍入方式,但是你知道结果不需要舍入的时候,也就意味着如果使用了这种舍入模式,那么如果出现一个不精确的结果比如 1/3,那么会抛出 ArithmeticException。

Immutability and Arithmetic

BigDecimal 是不可变对象,也就意味这如果创建了一个 BigDecimal 是 2.00 那么这个 BigDecimal 会一直是 2.00。在做算术是比如 add()multiply() 方法时会返回一个新的 BigDecimal 对象。

Comparison

Never use .equal() method to compare BigDecimal. Because this equals function will compare the scale. If the scale is different, .equals() will return false, even if they are the same number mathematically.

BigDecimal a = new BigDecimal("2.00");
BigDecimal b = new BigDecimal("2.0");
print(a.equals(b)); // false

反之,应该使用 .compareTo() and .signum() 方法

a.compareTo(b);  // returns (-1 if a < b), (0 if a == b), (1 if a > b)
a.signum(); // returns (-1 if a < 0), (0 if a == 0), (1 if a > 0)

何时舍入结果:关于精度的思考

如果要在计算中使用舍入模式,那么用什么精度呢?答案是打算如何使用结果。一般情况下,会知道最后用户需要的结果的精确度。对于那些中间计算过程中出现的数字,你需要增加一位数字来提高精确度。

比如 0.0144 + 0.0143 最后保留两位小数的话,在结果舍入会得到 0.03,而如果将两个数字加法之前就舍入,那么会得到 0.02.

如果最后的结果是乘法得到,那么你应当保留尽可能多的精度。而 Ratios 比率 和 Unit costs 单位价格,不应当舍入。而应当在做完所有计算之后在对结果进行舍入。

reference


2017-03-22 java , double , float , bigdecimal , jdk

使用 mitmdump 记录 HTTP 流量

之前一篇文章 主要是使用 mitmproxy 进行抓包,但是其实 mitmproxy 自带的 feature 远远不止于抓包,使用 mitmdump 可以自定义脚本来修改 response 返回,或者将请求结果 dump 到本地以便于之后的分析。

之前的那篇文章在 mitmdump 的时候只是简单的介绍了一下功能,并没有展开,所以有了这篇文章。mitmdump 可以理解为 mitmproxy 的命令行版本,他提供了 tcpdump 类似的功能来查看,记录,甚至编程改写 HTTP 流量。

保存流量

开启代理模式,并将所有的请求写入文件

mitmdump -w outfile

过滤保存的流量

-n 参数表示不开启代理, -r 表示读入 infile,然后将将所有 match ~m post POST 流量写入 outfile 文件中。

mitmdump -nr infile -w outfile "~m post"

关于过滤的规则,可以具体参考这里

客户端重放请求

使用 -n 参数不开启代理,然后 -c filename 参数进行重放。

mitmdump -nc outfile

甚至是可以重放请求,然后将结果保存到另外的文件中

mitmdump -nc srcfile -w dstfile

添加脚本

可以在启动 mitmdump 时添加自定义的脚本用来改写请求。

mitmdump -s examples/add_header.py

如果脚本文件带有参数,则需要在 -s 参数后面增加双引号,比如 mitmdump -s "add_header.py custom_header"

组合使用

将这些参数组合一起使用

mitmdump -ns examples/add_header.py -r srcfile -w dstfile

从 srcfile 文件中加载流量,然后使用特定的脚本改写,然后将结果写入 dstfile 文件中。

实例

将请求结果保存到本地文件

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import os
import sys

from mitmproxy import flowfilter, http, ctx


# events run ordr: start, request, responseheaders, response, error, done

class Filter:
    MOVIE_TOP250 = '/api/v2/subject_collection/movie_top250/items'

    def __init__(self, path):
        self.folder_path = path
        # 构造一个 HTTP response code
        self.http_code_ok = flowfilter.parse('~c 200')
        if not os.path.exists(self.folder_path):
            os.makedirs(self.folder_path)
        # 构造一个 URL 过滤器
        self.douban_path = flowfilter.parse(
            '~u frodo.douban.com/api/v2/subject_collection/movie_top250/items')

    # @concurrent  # Remove this and see what happens
    def request(self, flow: http.HTTPFlow):
        if flowfilter.match(self.douban_path, flow):
            if flow.request.host:
                ctx.log(
                    "handle request: %s%s" % (
                        flow.request.host, flow.request.path))

    def response(self, flow: http.HTTPFlow):
        if flowfilter.match(self.http_code_ok, flow):
            """只有 200 状态进入"""
            ctx.log('code %s' % flow.response.status_code)
            if flowfilter.match(self.MOVIE_TOP250, flow):
                if flow.response.content:
                    pretty_path = str(flow.request.path.rstrip())
                    pretty_path = pretty_path.replace('/', '_') \
                        .replace(':', '_') \
                        .replace('&', '_')
                    pretty_path = pretty_path[:250] + '.json'
                    res_content = flow.response.content.decode('utf-8')
                    path = os.path.join(self.folder_path, pretty_path)
                    with open(path, 'w+') as f:
                        f.write(res_content)


def start():
    if len(sys.argv) != 2:
        raise ValueError('Usage: -s "save_response.py path"')
    # 保存结果的 folder 路径
    return Filter(sys.argv[1])

将上面的脚本执行

/usr/local/bin/mitmdump -s "save_response.py /tmp/response_result/"

然后在结果路径中就能得到请求的豆瓣 Top250 电影结果,然后再对电影结果进行解析即可。

或者可以将请求的 webp 或者 jpg 的图全都保存到另外的文件夹中

pretty_url = flow.request.pretty_url
if pretty_url.endswith(".webp") or pretty_url.endswith('.jpg'):
    # ctx.log('pretty url %s' % flow.request.pretty_url)
    filename = os.path.join(self.folder_path,
                            os.path.basename(pretty_url))
    with open(filename, 'wb') as f:
        f.write(flow.response.content)

然后只要浏览过的图片就全都保存在本地的文件夹中了。

按规则过滤请求

mitm 的过滤都是依靠 flowfilter.py 来实现的,可以匹配的规则有如下

    The following operators are understood:

        ~q          Request
        ~s          Response

    Headers:

        Patterns are matched against "name: value" strings. Field names are
        all-lowercase.

        ~a          Asset content-type in response. Asset content types are:
                        text/javascript
                        application/x-javascript
                        application/javascript
                        text/css
                        image/*
                        application/x-shockwave-flash
        ~h rex      Header line in either request or response
        ~hq rex     Header in request
        ~hs rex     Header in response

        ~b rex      Expression in the body of either request or response
        ~bq rex     Expression in the body of request
        ~bs rex     Expression in the body of response
        ~t rex      Shortcut for content-type header.

        ~d rex      Request domain
        ~m rex      Method
        ~u rex      URL
        ~c CODE     Response code.
        rex         Equivalent to ~u rex

从这些匹配规则就能看出来过滤规则可以非常精细,比如过滤结果为 500 的请求,比如过滤 header 中 content-type 为某种类型的请求,比如按照正则去匹配 URL 等等。

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import sys

from mitmproxy import flowfilter, http, ctx


# events run ordr: start, request, responseheaders, response, error, done

class Filter:
    MOVIE_TOP250 = '/api/v2/subject_collection/movie_top250/items'

    def __init__(self):
        # 构造一个 URL 过滤器
        self.douban_path = flowfilter.parse(
            '~u frodo.douban.com/api/v2/elendil/home_timeline')
        # 构造一个 HTTP response code
        self.http_code_ok = flowfilter.parse('~c 200')
        # Domain
        self.my_domain = flowfilter.parse('~d douban.com')
        # Method
        self.filter_mathod = flowfilter.parse('~m POST')
        # content-type header
        self.filter_content_type = flowfilter.parse('~t json')

    # @concurrent  # Remove this and see what happens
    def request(self, flow: http.HTTPFlow):
        if flowfilter.match(self.douban_path, flow):
            if flow.request.host:
                ctx.log(
                    "handle request: %s%s" % (
                        flow.request.host, flow.request.path))

    def response(self, flow: http.HTTPFlow):
        if flowfilter.match(self.http_code_ok, flow):
            """只有 200 状态进入"""
            ctx.log('code %s' % (flow.response.status_code))
        if flowfilter.match(self.my_domain, flow):
            """只有匹配域名"""
            ctx.log('domain %s' % flow.response.text)
        if flowfilter.match(self.douban_path, flow):
            """只有 特定 url 可以进入"""
            ctx.log('douban text' + flow.response.text)
            ctx.log('douban reason ' + flow.response.reason)
            ctx.log('douban http version ' + flow.response.http_version)
        pretty_url = flow.request.pretty_url
        if flowfilter.match(self.MOVIE_TOP250, flow):
            if flow.response.content:
                res_content = flow.response.content.decode('utf-8')
                ctx.log("content: " + res_content)


def start():
    if len(sys.argv) != 2:
        raise ValueError('Usage: -s "dump.py"')
    return Filter()

reference


2017-03-16 mitmproxy , mitmdump , mitmweb , mitm , charles

推荐网站之快捷键:快捷键 ShortcutWorld Wiki

今天推荐的网站是 ShortcutWorld,同时也是整理笔记的一篇文章。

推荐网站也可以看看之前的推荐,AlternativeTo 可以寻找各种产品的代替品,现在产品关闭的越来越多了,很好用的产品被关闭非常心疼,还有很多通过图片寻找字体等等,都可以参考。而今天要推荐的是收集和整理了很多桌面应用,网页应用快捷键的 Wiki 网站。

官网地址: https://www.shortcutworld.com/

为什么会知道这个网站的呢?主要是当时寻找 Linux mint 的快捷键搜到了 这个页面 ,然后在这个页面上,竟然发现了看官方文档都没找到的录屏快捷键 Ctrl+Alt+Shift+R</kdb> ,竟然看这个 Wiki 的时候发现了。

不过其实用来找快捷键最快的方法还是官方文档和 Google 啦。这个网站适合不定时看一看来学习一下新的技能。


2017-03-11 website , 推荐网站 , tool , shortcut

Openwrt 平均负载

Openwrt 在 Luci 后台很显眼的位置有三个不断刷新的数字,其实这个数字是“平均负载”(Load Average)的意思,这是 Linux 操作系统衡量系统负载和稳定性的重要参数。

平均负载

在 Linux 及各种 Linux 衍生版(包括 Openwrt)中,都可以使用如下命令查看系统平均负载。

uptime 命令:

root@OpenWrt:/# uptime
 21:22:57 up 19:21,  load average: 1.30, 2.44, 2.38

top 命令:

Mem: 119632K used, 6740K free, 0K shrd, 41348K buff, 48152K cached
CPU:   0% usr   0% sys   0% nic  72% idle   0% io   0% irq  27% sirq
Load average: 0.33 1.82 2.17 1/76 16075

w 命令,查看当前系统有谁登录,都在干什么:

$ w
 21:25:04 up 3 days, 11:07,  8 users,  load average: 0.48, 0.52, 0.59
USER     TTY      FROM             LOGIN@   IDLE   JCPU   PCPU WHAT
einverne tty7     :0               Tue10    3days  2:19m  2.39s cinnamon-session --session cinnamon
einverne pts/1    ev               Tue10   37.00s  2.45s  0.32s ssh root@192.168.1.1

直接查看 load average:

$ cat /proc/loadavg 
0.56 0.48 0.56 1/1264 5890

前三个数字表示平均进程数量外,后面一个分数,分子为正在运行进程数,分母表示系统进程总数,最后一个数字表示最近运行进程ID。

load average 显示的3个数字,分别表示:系统在过去1分钟、5分钟、15分钟内运行进程队列中的平均进程数量。 正常情况下的时候就是0到1之间,大于1的时候,表示系统已经没有多余资源了,有些队列就需要等待处理。

短时间大于1是没有影响的,特别是第一个一分钟的数据,但是如果后面两个数据,特别是最后一个,经常大于0.7,就说明,有可能路由器超负荷了。

交通流量来比喻

有一篇 Understanding Linux CPU Load 将负载比喻交通流量,很形象,非常值得一看。

具体来说:

  • 0.00-1.00 之间的数字表示此时路况非常良好,没有拥堵,车辆可以毫无阻碍地通过。
  • 1.00 表示道路还算正常,但有可能会恶化并造成拥堵。此时系统已经没有多余的资源了,管理员需要进行优化。
  • 1.00-*** 表示路况不太好了,如果到达2.00表示有桥上车辆一倍数目的车辆正在等待。这种情况你必须进行检查了。

多核CPU的话,满负荷状态的数字为 “1.00 * CPU核数”,即双核CPU为2.00,四核CPU为4.00。

reference


2017-03-10 openwrt , linux , cpu

每天学习一个命令:dig 查询 DNS 解析结果

dig 命令是一个用于询问 DNS 域名服务器的灵活的工具。它执行 DNS 搜索,显示从接受请求的域名服务器返回的答复。

常见用法

查找 www.google.com 的 A 记录

dig www.google.com

输出如下

; <<>> DiG 9.10.3-P4-Ubuntu <<>> google.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 34834
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4000
;; QUESTION SECTION:
;google.com.			IN	A

;; ANSWER SECTION:
google.com.		75	IN	A	172.217.24.206

;; Query time: 0 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Thu Jun 21 16:52:41 CST 2018
;; MSG SIZE  rcvd: 55

命令前两行显示 dig 版本,参数,以及隐式参数 +cmd 意味信息本身会被打印

  • DNS 应答消息数据, QUERY 未遇到错误 NOERROR ,还有 事务 id 34834
  • flags 行表示该消息是查询响应 (qr 标志),并且原始查询中期望使用递归 (rd 标志),而且由响应服务器 (ra 标志) 提供

指定 dns 服务器查找 www.google.com 的 A 记录

dig @8.8.8.8 www.google.com

查找 IP 地址对应的主机名 [[PTR]] 反向DNS 记录:

dig -x 8.8.8.8

外延 nslookup

使用 nslookup 查询域名 A 记录

nslookup www.google.com

2017-03-10 dig , linux , network , dns , command , domain , ip

电子书

最近文章

  • 我买了一块 1TB 的便携移动硬盘 三星 T7 笔记本电脑用了 3 年多,各种媒体材料,尤其是音乐我喜欢放在本地,以及各种应用程序基本上已经把磁盘自带的空间占满了,这两天刚好看到日亚有促销活动,可能是看我之前搜索过 SanDisk E61,E81 ,所以推荐里面直接推送了一个三星的 T7,看了一下价格只要 10600 JPY,用 Keepa 对比了一下历史价格,以及京东上的价格,感觉还挺合适的,就下了单。
  • 对象存储服务提供商提供的免费存储容量 [[对象存储]] 的英文是 Object-based Storage System,是一种将数据以对象的形式存储在分布式系统中的服务,而不是传统的文件系统或者块存储。
  • 反查一个域名的所有子域名 前段时间看到一篇文章说因为 Nginx 的一个「特性」,在直接访问 IP ,并且没有配置默认证书的情况下 Nginx 就会返回一个 SSL 证书从而倒置域名的泄露,进而泄露了网站的源 IP,使得一些扫描网站,比如 [[censys]] 可以直接查询到域名背后的网站 IP,从而导致网站即使用了 CDN 也会遭受到攻击。在这个契机下,我又开始了衍生,因为在 censys,[[fofa]],[[Shodan]] 等等网站上你只需要输入一个域名就可以获得所有这个站点相关的信息,那么有没有办法可以在只知道一个网站域名的情况下知道所有的二级域名呢。
  • 使用 Dokku 构建属于你自己的 PaaS Dokku 是一个开源的 PaaS,用户可以非常轻松地构建自己的 PaaS 云平台。
  • zlibrary 使用技巧 之前 zlibrary 的域名被取缔也曾经是一度的热门,但是 zlibrary 并没有就此消失。这篇文章就介绍几个继续使用 zlibraray 的小技巧。